

Chiral recognition and logic gates

Recognition of chiral guests

- Discrimination between enantiomeric species
- Enantiomers cannot be separated by physical properties
- To separate them they should be converted into diastereomers
- Only chiral hosts can be used
- The thermodynamically more stable HOST.GUEST pair will be formed (matched, mismatched)
- Preference of one enantiomer over the other
- Host preferably belongs to C₂ or D₂ symmetry group

Achiral host – chiral guest

Achiral Host - Chiral Guest

Chiral host – chiral guest

Symmetry of host

- C2 symmetric hosts have the same faces
- In general host and guest have heterochiral preference (R-S, S-R)

Binol the ultimate chiral element, axial chirality

1,1'-bi-2,2'-naphtol BINOL

Restricted rotation due to H-H banging

Recognition of aminoalcohols

• replacement by aminoalcohol restores fluorescence

Recognition of α-hydroxy carboxylic acid

- PET from N is turned off \rightarrow fluorescence enhancement
- $I_{\rm S}/I_0 = 2.87$
- ef $[=(I_S I_0)/(I_R I_0)] = 2.49$

Recognition of α -hydroxy carboxylic acids

proposed 1:1 complex of (S)-15+(R)-phenyllactic acid.

Fluorescent enantioselectivity of (S)-15 toward various chiral R-hydroxycarboxylic acids

Recognition of amino acids

Enantioselectivity of (R)-11 in the fluorescent recognition of various amino acid derivatives

Logic gates

- Logic operations at molecular level
- Miniaturization
- Molecular wires
- Binary units (0, 1)
- Integrated logic (e.g. not+and = NAND) in one gate
- Further miniaturization
- Single (yes, not) and multiple input (and, or etc.) gates

YES operation

NOT operation

AND logic

OR logic

XOR logic (exclusive Or –either/or)

- Output is true if either but not both is present
- no input $\lambda abs = 394 \text{ nm}$
- protonation $\lambda abs = 478 \text{ nm}$
- calcium $\lambda abs = 347 \text{ nm}$
- both $\lambda abs = 396 \text{ nm}$

NAND logic (NOT+AND)

Input Fe²+	Input NOBF₄	Output Fl	
0	0	1	
1	0	1	
0	1	1	
1	1	0	

- Output is false if both input present
- AND followed by negation
- Fe³⁺ quenches fluorescence

INHIBIT logic (AND + NOT)

- Tb complex is luminescent in oxygen free media
- protonation of the sensitizer allows for excitation of the quinoline and FRET

Half-adder (AND + XOR)

AND

XOR

Input A	Input B	Output F (Carry)	Output T (Sum)	A+B
		AND	XOR	
0	0	0	0	00
1	0	0	1	01
0	1	0	1	01
1	1	1	0	10

- The two gates are compatible
- There are examples where the two gates are in one molecule